Earth Science, 11e

Earthquakes and Earth’s Interior

Chapter 7
Earthquakes

General features

- Vibration of Earth produced by the rapid release of energy
- Associated with movements along faults
 - Explained by the plate tectonics theory
 - Mechanism for earthquakes was first explained by H. Reid
 - Rocks "spring back" – a phenomena called elastic rebound
 - Vibrations (earthquakes) occur as rock elastically returns to its original shape
Elastic rebound

Figure 7.5
Earthquakes

General features

- Earthquakes are often preceded by foreshocks and followed by aftershocks
Earthquakes

Earthquake waves

- Study of earthquake waves is called seismology
- Earthquake recording instrument (seismograph)
 - Records movement of Earth
 - Record is called a seismogram
- Types of earthquake waves
 - Surface waves
 - Complex motion
 - Slowest velocity of all waves
Seismograph

Figure 7.6
A seismogram records wave amplitude vs. time

Figure 7.7
Surface waves

F. Surface waves that are like ocean waves
Earthquakes

- Earthquake waves
 - Types of earthquake waves
 - Body waves
 - Primary (P) waves
 - Push-pull (compressional) motion
 - Travel through solids, liquids, and gases
 - Greatest velocity of all earthquake waves
Primary (P) waves

B. P waves traveling along the surface

Figure 7.8 B
Earthquakes

- Earthquake waves
 - Types of earthquake waves
 - Body waves
 - Secondary (S) waves
 - "Shake" motion
 - Travel only through solids
 - Slower velocity than P waves
Secondary (S) waves

D. S waves traveling along the surface

Figure 7.8 D
Earthquakes

- Locating an earthquake
 - Focus – the place within Earth where earthquake waves originate
 - Epicenter
 - Point on the surface, directly above the focus
 - Located using the difference in the arrival times between P and S wave recordings, which are related to distance
Earthquake focus and epicenter

Figure 7.2
Earthquakes

Locating an earthquake

- Epicenter
 - Three station recordings are needed to locate an epicenter
 - Circle equal to the epicenter distance is drawn around each station
 - Point where three circles intersect is the epicenter
A time-travel graph is used to find the distance to the epicenter.

Figure 7.9
The epicenter is located using three or more seismic stations.

Figure 7.10
Earthquakes

- Locating an earthquake
 - Earthquake zones are closely correlated with plate boundaries
 - Circum-Pacific belt
 - Oceanic ridge system
Magnitude 5 or greater earthquakes over a 10 year period

Figure 7.11
Earthquakes

Earthquake intensity and magnitude

• Intensity
 • A measure of the degree of earthquake shaking at a given locale based on the amount of damage
 • Most often measured by the Modified Mercalli Intensity Scale

• Magnitude
 • Concept introduced by Charles Richter in 1935
Earthquakes

Earthquake intensity and magnitude

- Magnitude
 - Often measured using the Richter scale
 - Based on the amplitude of the largest seismic wave
 - Each unit of Richter magnitude equates to roughly a 32-fold energy increase
 - Does not estimate adequately the size of very large earthquakes
Earthquakes

Earthquake intensity and magnitude

• Magnitude
 • Moment magnitude scale
 • Measures very large earthquakes
 • Derived from the amount of displacement that occurs along a fault zone
Earthquakes

- Earthquake destruction
 - Factors that determine structural damage
 - Intensity of the earthquake
 - Duration of the vibrations
 - Nature of the material upon which the structure rests
 - The design of the structure
Earthquakes

Earthquake destruction

- Destruction results from
 - Ground shaking
 - Liquefaction of the ground
 - Saturated material turns fluid
 - Underground objects may float to surface
 - Tsunami, or seismic sea waves
 - Landslides and ground subsidence
 - Fires
Damage caused by the 1964 Anchorage, Alaska earthquake

Figure 7.14
The Turnagain Heights slide resulted from the 1964 Anchorage, Alaska earthquake

Figure 7.21
Formation of a tsunami

Figure 7.18
Tsunami travel times to Honolulu

Figure 7.20
Earthquakes

Earthquake prediction

• Short-range – no reliable method yet devised for short-range prediction
• Long-range forecasts
 • Premise is that earthquakes are repetitive
 • Region is given a probability of a quake
Earth's layered structure

- Most of our knowledge of Earth’s interior comes from the study of P and S earthquake waves
 - Travel times of P and S waves through Earth vary depending on the properties of the materials
 - S waves travel only through solids
Possible seismic paths through the Earth

Figure 7.24
Earth's layered structure

Layers defined by composition

- Crust
 - Thin, rocky outer layer
 - Varies in thickness
 - Roughly 7 km (5 miles) in oceanic regions
 - Continental crust averages 35-40 km (25 miles)
 - Exceeds 70 km (40 miles) in some mountainous regions
Earth's layered structure

- Layers defined by composition
 - Crust
 - Continental crust
 - Upper crust composed of granitic rocks
 - Lower crust is more akin to basalt
 - Average density is about 2.7 g/cm3
 - Up to 4 billion years old
Earth's layered structure

- Layers defined by composition
 - Crust
 - Oceanic Crust
 - Basaltic composition
 - Density about 3.0 g/cm3
 - Younger (180 million years or less) than the continental crust
Earth's layered structure

- Layers defined by composition
 - Mantle
 - Below crust to a depth of 2900 kilometers (1800 miles)
 - Composition of the uppermost mantle is the igneous rock peridotite (changes at greater depths)
Earth's layered structure

- Layers defined by composition
 - **Outer Core**
 - Below mantle
 - A sphere having a radius of 3486 km (2161 miles)
 - Composed of an iron-nickel alloy
 - Average density of nearly 11 g/cm³
Earth's layered structure

Layers defined by physical properties

- Lithosphere
 - Crust and uppermost mantle (about 100 km thick)
 - Cool, rigid, solid
- Asthenosphere
 - Beneath the lithosphere
 - Upper mantle
 - To a depth of about 660 kilometers
 - Soft, weak layer that is easily deformed
Earth's layered structure

- Layers defined by physical properties
 - Mesosphere (or lower mantle)
 - 660-2900 km
 - More rigid layer
 - Rocks are very hot and capable of gradual flow
 - Outer core
 - Liquid layer
 - 2270 km (1410 miles) thick
 - Convective flow of metallic iron within generates Earth’s magnetic field
Earth's layered structure

Layers defined by physical properties

- Inner Core
 - Sphere with a radius of 1216 km (754 miles)
 - Behaves like a solid
Views of Earth’s layered structure

Figure 7.25
Earth's layered structure

- Discovering Earth’s major layers
 - Discovered using changes in seismic wave velocity
 - Mohorovicic discontinuity
 - Velocity of seismic waves increases abruptly below 50 km of depth
 - Separates crust from underlying mantle
Earth's layered structure

- Discovering Earth’s major layers
 - Shadow zone
 - Absence of P waves from about 105 degrees to 140 degrees around the globe from an earthquake
 - Explained if Earth contained a core composed of materials unlike the overlying mantle
Seismic shadow zones

Figure 7.26
Earth's layered structure

- Discovering Earth’s major layers
 - Inner core
 - Discovered in 1936 by noting a new region of seismic reflection within the core
 - Size was calculated in the 1960s using echoes from seismic waves generated during underground nuclear tests
Earth's layered structure

- Discovering Earth’s composition
 - Oceanic crust
 - Prior to the 1960s scientists had only seismic evidence from which to determine the composition of oceanic crust
 - Development of deep-sea drilling technology made the recovery of ocean floor samples possible
Earth's layered structure

Discovering Earth’s composition

- Mantle
 - Composition is more speculative
 - Lava from the asthenosphere has a composition similar to that which results from the partial melting of a rock called peridotite

- Core
 - Evidence comes from meteorites
 - Composition ranges from metallic meteorites made of iron and nickel to stony varieties composed of dense rock similar to peridotite
Discovering Earth’s composition

- Core
 - Evidence comes from meteorites
 - Iron, and other dense metals, sank to Earth’s interior during the planet’s early history
 - Earth’s magnetic field supports the concept of a molten outer core
 - Earth’s overall density is also best explained by an iron core
End of Chapter 7