Earth Science, 11e

The Atmosphere: Composition, Structure, and Temperature

Chapter 16
Weather and climate

- **Weather**
 - Weather is over a short period of time
 - Constantly changing

- **Climate**
 - Climate is over a long period of time
 - Generalized, composite of weather
Weather and climate

Elements of weather and climate

• Properties that are measured regularly
• Most important elements
 • Temperature
 • Humidity
 • Cloudiness
 • Precipitation
 • Air Pressure
 • Winds speed and direction
Composition of the atmosphere

- Air is a mixture of discrete gases
- Major components of clean, dry air
 - Nitrogen (N) – 78%
 - Oxygen (O₂) – 21%
 - Argon and other gases
 - Carbon dioxide (CO₂) – 0.036% – absorbs heat energy from Earth
Proportional volume of gases that compose dry air

Figure 16.3
Composition of the atmosphere

Variable components of air

- Water vapor
 - Up to about 4% of the air's volume
 - Forms clouds and precipitation
 - Absorbs heat energy from Earth

- Aerosols
 - Tiny solid and liquid particles
 - Water vapor can condense on solids
 - Reflect sunlight
 - Help color sunrise and sunset
Composition of the atmosphere

- Variable components of air
 - Ozone
 - Three atoms of oxygen (O$_3$)
 - Distribution not uniform
 - Concentrated between 10 to 50 kilometers above the surface
 - Absorbs harmful UV radiation
 - Human activity is depleting ozone by adding chlorofluorocarbons (CFCs)
Structure of the atmosphere

- Pressure changes
 - Pressure is the weight of the air above
 - Average sea level pressure
 - Slightly more than 1000 millibars
 - About 14.7 pounds per square inch
 - Pressure decreases with altitude
 - One-half of the atmosphere is below 3.5 miles (5.6 km)
 - Ninety percent of the atmosphere is below 10 miles (16 km)
Atmospheric pressure variation with altitude

Figure 16.5
Structure of the atmosphere

- Atmospheric layers based on temperature
 - Troposphere
 - Bottom layer
 - Temperature decreases with altitude – called the environmental lapse rate
 - 6.5°C per kilometer (average)
 - 3.5°F per 1000 feet (average)
 - Thickness varies – average height is about 12 km
 - Outer boundary is named the tropopause
Structure of the atmosphere

- Atmospheric layers based on temperature
 - Stratosphere
 - About 12 km to 50 km
 - Temperature increases at top
 - Outer boundary is named the stratopause
 - Mesosphere
 - About 50 km to 80 km
 - Temperature decreases
 - Outer boundary is named the mesopause
Structure of the atmosphere

- Atmospheric layers based on temperature
 - Thermosphere
 - No well-defined upper limit
 - Fraction of atmosphere's mass
 - Gases moving at high speeds
Thermal structure of the atmosphere

Figure 16.7
Earth-Sun relations

- Earth motions
 - Rotates on its axis
 - Revolves around the Sun

- Seasons
 - Result of
 - Changing Sun angle
 - Changing length of daylight
Daily paths of the Sun at 40° N latitude

Figure 16.9 A
Relationship of sun angle and solar radiation received on Earth

Figure 16.10
Earth-Sun relations

Seasons
• Caused by Earth's changing orientation to the Sun
 • Axis is inclined 23½°
 • Axis is always pointed in the same direction
• Special days (Northern Hemisphere)
 • Summer solstice
 • June 21-22
 • Sun's vertical rays are located at the Tropic of Cancer (23½° N latitude)
Relationship of sun angle to the path of solar radiation

Figure 16.11
Earth-Sun relations

- **Seasons**
 - Special days (Northern Hemisphere)
 - Winter solstice
 - December 21-22
 - Sun's vertical rays are located at the Tropic of Capricorn (23½° S latitude)
 - Autumnal equinox
 - September 22-23
 - Sun's vertical rays are located at the **Equator** (0° latitude)
Earth-Sun relations

❖ Seasons

• Special days (Northern Hemisphere)
 • Spring equinox
 • March 21-22
 • Sun's vertical rays are located at the Equator (0° latitude)
Earth-Sun relationships

Figure 16.12
Characteristics of the solstices and equinoxes

Figure 16.13
Atmospheric heating

- Heat is always transferred from warmer to cooler objects

Mechanisms of heat transfer

- **Conduction** through molecular activity
- **Convection**
 - Mass movement within a substance
 - Usually vertical motions
- **Radiation** (electromagnetic radiation)
 - Velocity: 300,000 kilometers (186,000 miles) per second in a vacuum
Mechanisms of heat transfer

Figure 16.16
Atmospheric heating

Mechanisms of heat transfer

• Radiation (electromagnetic radiation)
 • Consists of different wavelengths
 • Gamma (very short waves)
 • X-rays
 • Ultraviolet (UV)
 • Visible
 • Infrared
 • Microwaves and radio waves
The electromagnetic spectrum

Figure 16.17
Atmospheric heating

Mechanisms of heat transfer

- Radiation (electromagnetic radiation)
 - Governed by basic laws
 - All objects, at whatever temperature, emit radiation
 - Hotter objects radiate more total energy per unit area than do cooler objects
 - The hotter the radiating body, the shorter the wavelength of maximum radiation
 - Objects that are good absorbers of radiation are good emitters as well
Atmospheric heating

- Incoming solar radiation
 - Atmosphere is largely transparent to incoming solar radiation
 - Atmospheric effects
 - Reflection – albedo (percent reflected)
 - Scattering
 - Absorption
 - Most visible radiation reaches the surface
 - About 50% absorbed at Earth's surface
Average distribution of incoming solar radiation

Figure 16.19
Atmospheric heating

- Radiation from Earth's surface
 - Earth re-radiates radiation (terrestrial radiation) at the longer wavelengths
 - Longer wavelength terrestrial radiation is absorbed by
 - Carbon dioxide and
 - Water vapor in the atmosphere
 - Lower atmosphere is heated from Earth's surface
 - Heating of the atmosphere is termed the greenhouse effect
The heating of the atmosphere

Figure 16.21

Copyright © 2006 Pearson Prentice Hall, Inc.
Temperature measurement

- Daily maximum and minimum
- Other measurements
 - Daily mean temperature
 - Daily range
 - Monthly mean
 - Annual mean
 - Annual temperature range
Mean monthly temperatures for two locations in Canada

Figure 16.24
Mean monthly temperatures for Eureka, California and New York City

Figure 16.26
Temperature measurement

- Human perception of temperature
 - Anything that influences the rate of heat loss from the body also influences the sensation of temperature
 - Important factors are
 - Air temperature
 - Relative humidity
 - Wind speed
 - Sunshine
Controls of temperature

- Temperature variations
- Receipt of solar radiation is the most important control

Other important controls
 - Differential heating of land and water
 - Land heats more rapidly than water
 - Land gets hotter than water
 - Land cools faster than water
 - Land gets cooler than water
Controls of temperature

Other important controls

- Altitude
- Geographic position
- Cloud cover
- Albedo
<table>
<thead>
<tr>
<th>Surface</th>
<th>Percent Reflected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fresh snow</td>
<td>80–90</td>
</tr>
<tr>
<td>Old snow</td>
<td>50–60</td>
</tr>
<tr>
<td>Sand (beach, desert)</td>
<td>20–40</td>
</tr>
<tr>
<td>Grass</td>
<td>5–25</td>
</tr>
<tr>
<td>Dry soil (plowed field)</td>
<td>15–25</td>
</tr>
<tr>
<td>Wet earth (plowed field)</td>
<td>10</td>
</tr>
<tr>
<td>Forest</td>
<td>5–10</td>
</tr>
<tr>
<td>Water (Sun near horizon)</td>
<td>50–80</td>
</tr>
<tr>
<td>Water (Sun near zenith)</td>
<td>5–10</td>
</tr>
<tr>
<td>Thick cloud</td>
<td>70–85</td>
</tr>
<tr>
<td>Thin cloud</td>
<td>25–30</td>
</tr>
<tr>
<td>Earth and atmosphere (overall total)</td>
<td>30</td>
</tr>
</tbody>
</table>
Clouds reduce the daily temperature range

Figure 16.28
World distribution of temperature

- Temperature maps
 - Isotherm – a line connecting places of equal temperature
 - Temperatures are adjusted to sea level
 - January and July are used for analysis because they represent the temperature extremes
World distribution of temperature

Global temperature patterns

- Temperature decreases poleward from the tropics
- Isotherms exhibit a latitudinal shift with the seasons
- Warmest and coldest temperatures occur over land
World distribution of temperature

- Global temperature patterns
 - In the Southern Hemisphere
 - Isotherms are straighter
 - Isotherms are more stable
 - Isotherms show ocean currents
 - Annual temperature range
 - Small near equator
 - Increases with an increase in latitude
 - Greatest over continental locations
World mean sea-level temperatures in January

Figure 16.29
World mean sea-level temperatures in July
End of Chapter 16