Earth Science, 11e

Air Pressure and Wind
Chapter 18
Atmospheric pressure

- Force exerted by the weight of the air above
- Weight of the air at sea level
 - 14.7 pounds per square inch
 - 1 kilogram per square centimeter
- Decreases with increasing altitude
- Units of measurement
 - Millibar (mb) – standard sea level pressure is 1013.2 mb
Atmospheric pressure

- Units of measurement
 - Inches of mercury – standard sea level pressure is 29.92 inches of mercury

- Instruments for measuring
 - Barometer
 - Mercury barometer
 - Invented by Torricelli in 1643
 - Uses a glass tube filled with mercury
A mercury barometer

Figure 18.2
Atmospheric pressure

Instruments for measuring

- Barometer
 - Aneroid barometer
 - "Without liquid"
 - Uses an expanding chamber
- Barograph (continuously records the air pressure)
Aneroid barometer

Figure 18.3
A recording aneroid barometer

Figure 18.4
Wind

- Horizontal movement of air
 - Out of areas of high pressure
 - Into areas of low pressure

- Controls of wind
 - Pressure gradient force
 - Isobars – lines of equal air pressure
 - Pressure gradient – pressure change over distance
A weather map showing isobars and wind speed/direction

Figure 18.5
Wind

Controls of wind

• Coriolis effect
 • Apparent deflection in the wind direction due to Earth's rotation
 • Deflection is to the right in the Northern Hemisphere and to the left in the Southern Hemisphere

• Friction
 • Only important near the surface
 • Acts to slow the air's movement
The Coriolis effect

Figure 18.6

B. Rotating Earth
Wind

- Upper air winds
 - Generally blow parallel to isobars – called geostrophic winds
 - Jet stream
 - "River" of air
 - High altitude
 - High velocity (120-240) kilometers per hour
The geostrophic wind

Figure 18.7
Comparison between upper-level winds and surface winds

Figure 18.9
Cyclones and anticyclones

- **Cyclone**
 - A center of low pressure
 - Pressure decreases toward the center
 - Winds associated with a cyclone
 - In the Northern Hemisphere
 - Inward (convergence)
 - Counterclockwise
 - In the Southern Hemisphere
 - Inward (convergence)
 - Clockwise
Cyclones and anticyclones

- **Cyclone**
 - Associated with rising air
 - Often bring clouds and precipitation

- **Anticyclone**
 - A center of high pressure
 - Pressure increases toward the center
Cyclones and anticyclones

- **Anticyclone**
 - Winds associated with an anticyclone
 - In the Northern Hemisphere
 - Outward (divergence)
 - Clockwise
 - In the Southern Hemisphere
 - Outward (divergence)
 - Counterclockwise
 - Associated with subsiding air
 - Usually bring "fair" weather
Cyclonic and anticyclonic winds in the Northern Hemisphere

Figure 18.10
Airflow associated with surface cyclones and anticyclones
General atmospheric circulation

- Underlying cause is unequal surface heating
- On the rotating Earth there are three pairs of atmospheric cells that redistribute the heat
- Idealized global circulation
 - Equatorial low pressure zone
 - Rising air
 - Abundant precipitation
General atmospheric circulation

- Idealized global circulation
 - Subtropical high pressure zone
 - Subsiding, stable, dry air
 - Near 30 degrees latitude
 - Location of great deserts
 - Air traveling equatorward from the subtropical high produces the trade winds
 - Air traveling poleward from the subtropical high produces the westerly winds
General atmospheric circulation

- Idealized global circulation
 - Subpolar low pressure zone
 - Warm and cool winds interact
 - Polar front – an area of storms
 - Polar high pressure zone
 - Cold, subsiding air
 - Air spreads equatorward and produces polar easterly winds
 - Polar easterlies collide with the westerlies along the polar front
Figure 18.15

Idealized global circulation
General atmospheric circulation

- Influence of continents
 - Seasonal temperature differences disrupt the
 - Global pressure patterns
 - Global wind patterns
 - Influence is most obvious in the Northern Hemisphere
 - Monsoon
 - Seasonal change in wind direction
Average surface pressure and associated winds for January

Figure 18.16 A
Average surface pressure and associated winds for July

Figure 18.16 B
General atmospheric circulation

- Influence of continents
 - Monsoon
 - Occur over continents
 - During warm months
 - Air flows onto land
 - Warm, moist air from the ocean
 - Winter months
 - Air flows off the land
 - Dry, continental air
Circulation in the mid-latitudes

- The zone of the westerlies
- Complex
- Air flow is interrupted by cyclones
 - Cells move west to east in the Northern Hemisphere
 - Create anticyclonic and cyclonic flow
 - Paths of the cyclones and anticyclones are associated with the upper-level airflow
Local winds

- Produced from temperature differences
- Small scale winds

Types
- Land and sea breezes
- Mountain and valley breezes
- Chinook and Santa Ana winds
Illustration of a sea breeze and a land breeze

Figure 18.17
Wind measurement

- Two basic measurements
 - Direction
 - Speed

- Direction
 - Winds are labeled from where they originate (e.g., North wind – blows from the north toward the south)
 - Instrument for measuring wind direction is the wind vane
Wind measurement

- **Direction**
 - Direction indicated by either
 - Compass points (N, NE, etc.)
 - Scale of 0° to 360°
 - Prevailing wind comes more often from one direction

- **Speed** – often measured with a cup anemometer
Changes in wind direction

- Associated with locations of
 - Cyclones
 - Anticyclones
- Often bring changes in
 - Temperature
 - Moisture conditions
El Niño and La Niña

El Niño

- A countercurrent that flows southward along the coasts of Ecuador and Peru
 - Warm
 - Usually appears during the Christmas season
 - Blocks upwelling of colder, nutrient-filled water, and anchovies starve from lack of food
- Strongest El Niño events on record occurred between 1982-83 and 1997-98
El Niño and La Niña

El Niño

- 1997-98 event caused
 - Heavy rains in Ecuador and Peru
 - Ferocious storms in California
- Related to large-scale atmospheric circulation
 - Pressure changed between the eastern and western Pacific called the Southern Oscillation
 - Changes in trade winds creates a major change in the equatorial current system, with warm water flowing eastward
Normal conditions

Figure 18.21 A
El Niño and La Niña

- El Niño
 - Effects are highly variable depending in part on the temperatures and size of the warm water pools
El Niño and La Niña

La Niña

- Opposite of El Niño
- Triggered by colder than average surface temperatures in the eastern Pacific
- Typical La Niña winter
 - Blows colder than normal air over the Pacific Northwest and northern Great Plains while warming much of the rest of the United States
 - Greater precipitation is expected in the Northwest
Events associated with El Niño and La Niña are now understood to have a significant influence on the state of weather and climate almost everywhere.
Global distribution of precipitation

- Relatively complex pattern
- Related to global wind and pressure patterns
 - High pressure regions
 - Subsiding air
 - Divergent winds
 - Dry conditions
 - e.g., Sahara and Kalahari deserts
Global distribution of precipitation

- Related to global wind and pressure patterns
 - Low pressure regions
 - Ascending air
 - Converging winds
 - Ample precipitation
 - e.g., Amazon and Congo basins
Average annual precipitation in millimeters
Global distribution of precipitation

- Related to distribution of land and water
 - Large landmasses in the middle latitudes often have less precipitation toward their centers
 - Mountain barriers also alter precipitation patterns
 - Windward slopes receive abundant rainfall from orographic lifting
 - Leeward slopes are usually deficient in moisture
End of Chapter 18