Chapter Overview

• Pelagic animals use a variety of adaptations to help them survive.
• Marine mammals share similar characteristics with land mammals.
Marine Animals Avoid Sinking

• May increase buoyancy
• Use of gas containers
 – Rigid gas containers, e.g., cephalopods
 – Swim bladders – slow-moving fish
Avoiding Sinking

• Ability to float
 – Zooplankton – some produce fats or oils to stay afloat

• Ability to swim
 – Nekton – larger fish and marine mammals
Floating Zooplankton

- Microscopic zooplankton have shells or tests.
- Highly abundant in oceans
Floating Zooplankton

• Radiolarians
 – Silica tests
 – Intricately ornamented
 – Spikes on test increase organism’s surface area
Floating Zooplankton

• Foraminifers
 – Very small
 – Planktonic most abundant, benthic most diverse
 – Calcium carbonate tests that are chambered
Floating Zooplankton

• **Copepods**
 - Microscopic
 - Shrimplike crustaceans
 - Segmented bodies, jointed legs
 - Most of ocean’s zooplankton biomass
Macroscopic Zooplankton

• Krill
 – Crustaceans
 – Resemble mini shrimp or large copepods
 – Abundant near Antarctica
 – Critical in Antarctic food chains
Floating Macroscopic Zooplankton

• Cnidarians – soft bodies, stinging tentacles
 – Hydrozoan (Portuguese man-of-war)
 • gas-filled float
 – Scyphozoan (jellyfish)
 • Soft, low-density bodies
Swimming Organisms

• Nektonic
• Fish, squids, sea turtles, marine mammals
• Swim by trapping water and expelling it, e.g., some squid
• Swim by curving body from front to back
Swimming Motion and General Fish Features

Alternate contraction and relaxation of the myomeres sends a wave of body curvature back along the body to produce a forward thrust.
Fin Designs in Fish

- Paired vertical fins as stabilizers
- Paired pelvic fins and pectoral fins for “steering” and balance
- Tail fin (caudal) for thrust
Fin Designs in Fish

• Rounded caudal fins
 – Flexible
 – Maneuver at slow speeds

• Truncate fins and forked fins
 – Useful for both maneuvering and thrust
Fin Designs in Fish

- **Lunate fins**
 - Rigid, little maneuverability
 - Efficient propulsion for fast swimmers

- **Heterocercal fins**
 - Asymmetrical
 - Lift for buoyancy (shark)
Adaptations for Finding Prey

• Mobility
• Lungers wait for prey and pounce (grouper).
 – Mainly white muscle tissue
• Cruisers actively seek prey (tuna).
 – Mostly red muscle tissue
Lungers and Cruisers
Lungers and Cruisers
Lungers and Cruisers

• Red vs. white muscle tissue
• Red – smaller fibers than white
 – Higher concentrations of myoglobin
 • Red pigment with oxygen affinity
 – Supplies more oxygen
 – Higher metabolic rate for endurance
Adaptations for Finding Prey

- Swimming speed
- Speed generally proportional to size
- Can move very fast for short time (mainly to avoid predation)
Cold-Blooded vs. Warm-Blooded

• Most fish are cold-blooded – poikilothermic
 – Bodies same temperature as environment
 – Not fast swimmers

• Some are warm-blooded – homeothermic
 – Found in warmer environments
 – Helps them capture prey
Adaptations of Deep-Water Nekton

• Mainly fish that consume *detritus* or each other
• Lack of abundant food
• Bioluminescence
 – photophores
Adaptations of Deep-Water Nekton

- Large, sensitive eyes
- Large sharp teeth
- Expandable bodies
- Hinged jaws
- Counterillumination
Deep Sea Nekton
Adaptations to Avoid Predation

• Schooling
 – Safety in numbers
 – School may appear as single larger unit
 – Schooling maneuvers confuse predator
Adaptations to Avoid Predation

• **Symbiosis** – two or more organisms mutually benefit from association

• **Commensalism** – less dominant organism benefits without harming host
Adaptations to Avoid Predation

- **Mutualism** – both organisms benefit
 - Example: clown fish and anemone
- **Parasitism** – parasite benefits at expense of host
Marine Mammals

• Land-dwelling ancestors
• Warm-blooded
• Breathe air
• Hair/fur
• Bear live young
• Mammary glands for milk
Major Marine Mammal Groups

Marine mammals of Class Mammalia

Order Carnivora
- Sea otter
- Polar bear
- Pinnipeds
 - Walrus
 - Seals
 - Sea lions/Fur seals

Order Sirenia
- Manatee
- Dugong

Order Cetacea
- Odontoceti: Toothed whales
 - Porpoises
 - Dolphins
 - Sperm whale
- Mysticeti: Moustached whales
 - Blue whale
 - Finback whale
 - Right/Bowhead whales
 - Humpback whale
 - Gray whale
Order Carnivora

• Prominent canine teeth
• Sea otters
• Polar bears
• Pinnipeds
 – Walruses
 – Seals
 – Sea lions
 – Fur seals
Order Carnivora

• Sea Otters
 – Inhabit kelp in coastal, eastern North Pacific
 – Extremely dense fur, lack insulating blubber
 – Hunted in 1800, made recovery
 – Eat many types of marine animals, use tools
 – High caloric needs
Order Carnivora

• Polar Bears
 – Massive webbed paws
 – Excellent swimmers
 – Thick fur, hollow hairs
 – Eat mostly seals
Order Carnivora

• Walruses
 – Large bodies
 – Adults of both genders have ivory tusks
Order Carnivora

• Seals
 – Also called earless seals or true seals
 – Differ from sea lions and fur seals
Seals vs. Sea Lions and Fur Seals

• Seals lack prominent ear flaps
• Seals have smaller front flippers
• Seals have fore flipper claws
• Different hip structures
• Different locomotion strategies
Order Sirenia

- Herbivores
- Manatees
 - Coastal areas of tropical Atlantic Ocean
- Dugongs
 - Coastal areas of Indian and western Pacific Oceans
Order Cetacea

- Whales, dolphins, porpoises
- Elongated skull
- Blowholes on top of skull
- Few hairs
- Fluke – horizontal tail fin for vertical propulsion
Order Cetacea
Order Cetacea

• Adaptations to increase swimming speed
 – Streamlined bodies
 – Specialized skin structure
 • 80% water
 • Stiff inner layer
 • Narrow canals with spongy material
Order Cetacea

• Adaptations for deep diving
• Use oxygen efficiently
 – Able to absorb 90% of oxygen inhaled
 – Able to store large quantities of oxygen
 – Able to reduce oxygen required for noncritical organs
Order Cetacea

- Muscles insensitive to buildup of carbon dioxide
- Collapsible lungs
- Alveoli – tiny chambers facilitate gas exchange with blood
Order Cetacea

• Physiologically affected by deep diving, but debilitating effects minimized

• **Nitrogen narcosis** – similar to drunkenness, occurs when diving too deep

• **Decompression sickness** – “the bends”
 – Nitrogen bubbles in blood from resurfacing too quickly
 – Bone damage, excruciating pain, possible death
Order Cetacea

- Suborder Odontoceti (toothed)
 - Dolphins, porpoises, killer whale, sperm whale
 - Echolocation to determine distance and direction to objects
 - Determine shape, size of objects
Dolphins vs. Porpoises

- Porpoises
 - Smaller, more stout body shape
 - Blunt snout
 - Triangular, smaller dorsal fin
 - Blunt or flat teeth
Dolphins vs. Porpoises

• Dolphins
 – Larger, more streamlined shape
 – Longer rostrum
 – **Falcate** dorsal fin (hooked)
 – Pointy teeth like killer whales (orca)
Echolocation

- Good vision of marine mammals limited by ocean conditions.
- Dolphins and porpoises emit sounds from blowhole.
- Sound passes through melon – organ on skull.
Echolocation

- Toothed whales send sound through water.
- An evolved inner ear structure may help toothed whales pick up sounds.
- Whale forces air through nasal passage, click travels through spermaceti organ.
Echolocation

- Sound is reflected, returned to the animal, and interpreted.
- Increased marine noise pollution may affect echolocation.
Intelligence in Toothed Whales

• Large brains relative to body size
• Communicate with each other
• Brains convoluted
• Trainable
Order Cetacea

- Suborder Mysticeti
- Baleen whales
- Blue whale, finback whale, humpback whale, gray whale, right whale
- Fibrous plates of baleen sieve prey items
- Vocalized sounds for various purposes
Baleen

- Plates in whale mouths instead of teeth
- Whales fill mouths with water, baleen traps fish, krill, plankton
Baleen
Baleen Whale Families

• Gray whales
 – Short, coarse baleen, no dorsal fin, bottom feeder

• Right whales
 – Long, fine baleen, no dorsal fin
 – North Atlantic and North Pacific right whales most critically endangered whales in world
Baleen Whale Families

- **Rorqual** whales
 - Balaenopterids – long, slender bodies
 - Megapterids – humpback whales
Gray Whale Migration

• 22,000 km (13,700 miles) annual migration from coastal Arctic Ocean to Baja California and Mexico
• Feeding grounds in Arctic (summer)
• Breeding and birthing grounds in tropical eastern Pacific (winter)
Whales as Endangered Species

- Fewer whales now than before whaling
- International Whaling Treaty
- Hunting of gray whale banned in 1938
- Gray removed from endangered list in 1993 as population rebounded
Gray Whale Friendly Behavior
Whaling

• International Whaling Commission (IWC)
 1948 – established to manage whale hunting
• In 1986, 72 IWC nations banned whaling
• Three ways to legally hunt whales:
 – Objection to IWC ban
 – Scientific whaling
 – Aboriginal subsistence whaling
End of CHAPTER 14
Animals of the Pelagic Environment